Comparison of three back-propagation training algorithms for two case studies
نویسندگان
چکیده
This paper investigates the use of three back-propagation training algorithms, Levenberg-Marquardt, conjugate gradient and resilient back-propagation, for the two case studies, stream-flow forecasting and determination of lateral stress in cohesionless soils. Several neural network (NN) algorithms have been reported in the literature. They include various representations and architectures and therefore are suitable for different applications. In the present study, three NN algorithms are compared according to their convergence velocities in training and performances in testing. Based on the study and test results, although the Levenberg-Marquardt algorithm has been found being faster and having better performance than the other algorithms in training, the resilient back-propagation algorithm has the best accuracy in testing period.
منابع مشابه
Classification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملPerformance Comparison between Back Propagation, Rpe and Mrpe Algorithms for Training Mlp Networks
This paper presents the performance comparison between back propagation, recursive prediction error (RPE) and modified recursive prediction error (MRPE) algorithms for training multilayered perceptron networks. Back propagation is a steepest descent type algorithm that normally has slow convergence rate and the search for the global minimum often becomes trapped at poor local minima. RPE and MR...
متن کاملA New Strategy for Training RBF Network with Applications to Nonlinear Integral Equations
A new learning strategy is proposed for training of radial basis functions (RBF) network. We apply two different local optimization methods to update the output weights in training process, the gradient method and a combination of the gradient and Newton methods. Numerical results obtained in solving nonlinear integral equations show the excellent performance of the combined gradient method in ...
متن کاملMinimizing Loss of Information at Competitive PLIP Algorithms for Image Segmentation with Noisy Back Ground
In this paper, two training systems for selecting PLIP parameters have been demonstrated. The first compares the MSE of a high precision result to that of a lower precision approximation in order to minimize loss of information. The second uses EMEE scores to maximize visual appeal and further reduce information loss. It was shown that, in the general case of basic addition, subtraction, or mul...
متن کامل